Robust Analysis of Silhouettes by Morphological Size Distributions
نویسندگان
چکیده
We address the topic of real-time analysis and recognition of silhouettes. The method that we propose first produces object features obtained by a new type of morphological operators, which can be seen as an extension of existing granulometric filters, and then insert them into a tailored classification scheme. Intuitively, given a binary segmented image, our operator produces the set of all the largest rectangles that can be wedged inside any connected component of the image. The latter are obtained by a standard background subtraction technique and morphological filtering. To classify connected components into one of the known object categories, the rectangles of a connected component are submitted to a machine learning algorithm called EXtremely RAndomized trees (Extra-trees). The machine learning algorithm is fed with a static database of silhouettes that contains both positive and negative instances. The whole process, including image processing and rectangle classification, is carried out in real-time. Finally we evaluate our approach on one of today’s hot topics: the detection of human silhouettes. We discuss experimental results and show that our method is stable and computationally effective. Therefore, we assess that algorithms like ours introduce new ways for the detection of humans in video sequences.
منابع مشابه
Robust Statistical Approach for Extraction of Moving Human Silhouettes from Videos
Human pose estimation is one of the key problems in computer visionthat has been studied in the recent years. The significance of human pose estimation is in the higher level tasks of understanding human actions applications such as recognition of anomalous actions present in videos and many other related applications. The human poses can be estimated by extracting silhouettes of humans as silh...
متن کاملRobust Foreground Extraction Technique Using Gaussian Family Model and Multiple Thresholds
We propose a robust method to extract silhouettes of foreground objects from color video sequences. To cope with various changes in the background, the background is modeled as generalized Gaussian Family of distributions and updated by the selective running average and static pixel observation. All pixels in the input video image are classified into four initial regions using background subtra...
متن کاملEIGENVECTORS OF COVARIANCE MATRIX FOR OPTIMAL DESIGN OF STEEL FRAMES
In this paper, the discrete method of eigenvectors of covariance matrix has been used to weight minimization of steel frame structures. Eigenvectors of Covariance Matrix (ECM) algorithm is a robust and iterative method for solving optimization problems and is inspired by the CMA-ES method. Both of these methods use covariance matrix in the optimization process, but the covariance matrix calcula...
متن کاملEffect of Micro Glass Flake on Morphological and Rheological Behaviour of Epoxy Vinyl Ester Composite Coatings
In the present work, attempts were made to investigate the reinforcement and treatment effect of GF on morphological and rheological behaviour of GF/epoxy vinyl ester composites. GF was incorporated into epoxy vinyl ester resin by sonication, and mechanical agitation. Rheological and morphological properties were studied as a function of particle treatment and size distributions. The dispersion...
متن کاملStudy of Saturated Hydraulic Conductivity Variations in Different Aggregate Size Distributions in an Agricultural Soil
Saturated hydraulic conductivity (Ks) is one of the most important soil physical characteristics that plays a major role in the soil hydrological behaviour. It is mainly affected by the soil structure characteristics. Aggregate size distribution is a measure of soil structure formation that can affect Ks. In this study, variations of Ks were investigated in various aggregate size distributions ...
متن کامل